Mutations at F637 in the NMDA receptor NR2A subunit M3 domain influence agonist potency, ion channel gating and alcohol action.
نویسندگان
چکیده
BACKGROUND AND PURPOSE NMDA receptors are important molecular targets of ethanol action in the CNS. Previous studies have identified a site in membrane-associated domain 3 (M3) of the NR1 subunit and two sites in M4 of the NR2A subunit that influence alcohol action; the sites in NR2A M4 also regulate ion channel gating. The purpose of this study was to determine whether mutations at the site in the NR2A subunit corresponding to the NR1 M3 site influence alcohol action and ion channel gating. EXPERIMENTAL APPROACH We investigated the effects of mutations at phenylalanine (F) 637 of the NR2A subunit using whole-cell and single-channel patch-clamp electrophysiological recording in transiently-transfected HEK 293 cells. KEY RESULTS Mutations at F637 in the NR2A subunit altered peak and steady-state glutamate EC(50) values, maximal steady-state to peak current ratios (I(ss):I(p)), mean open time, and ethanol IC(50) values. Differences in glutamate potency among the mutants were not due to changes in desensitization. Ethanol IC(50) values were significantly correlated with glutamate EC(50) values, but not with maximal I(ss):I(p) or mean open time. Ethanol IC(50) values were linearly and inversely related to molecular volume of the substituent. CONCLUSIONS AND IMPLICATIONS These results demonstrate that NR2A(F637) influences NMDA receptor affinity, ion channel gating, and ethanol sensitivity. The changes in NMDA receptor affinity are likely to be the result of altered ion channel gating. In contrast to the cognate site in the NR1 subunit, the action of ethanol does not appear to involve occupation of a critical volume at NR2A(F637).
منابع مشابه
Different sites of alcohol action in the NMDA receptor GluN2A and GluN2B subunits.
The NMDA receptor is a major target of alcohol action in the CNS, and recent behavioral and cellular studies have pointed to the importance of the GluN2B subunit in alcohol action. We and others have previously characterized four amino acid positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN2A subunit that influence both ion channel gating and alcohol sen...
متن کاملA novel alcohol-sensitive position in the N-methyl-D-aspartate receptor GluN2A subunit M3 domain regulates agonist affinity and ion channel gating.
Abundant evidence supports a role for N-methyl-d-aspartate (NMDA) receptor inhibition in the behavioral actions of ethanol, but the underlying molecular mechanisms have not been fully elucidated. We recently found that clusters of five positions in the third and fourth membrane-associated domains (M3 and M4) at the intersubunit interfaces form putative sites of alcohol action. In the present st...
متن کاملFunctional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains.
The N-methyl-D-aspartate receptor is an important mediator of the behavioral effects of ethanol in the central nervous system. Previous studies have demonstrated sites in the third and fourth membrane-associated (M) domains of the N-methyl-D-aspartate receptor NR2A subunit that influence alcohol sensitivity and ion channel gating. We investigated whether two of these sites, Phe-637 in M3 and Me...
متن کاملIdentification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors.
The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, an...
متن کاملAn NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions.
N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 151 6 شماره
صفحات -
تاریخ انتشار 2007